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LAUNCHING OF SURFACE WAVES ON AXIAL-CYLINDRICAL REXCTNE SURFACE 

by Norman C .  Wenger 

L e w i s  Research Center 

S"Y 

The exc i ta t ion  of t h n  dominznt transverse magnetic (TM) surface wave on an 
axial-cyl indrical  reac t ive  s7irface i s  discussed. Tne surface wave launcher 
cons is t s  of a per fec t ly  conducting, i n f i n i t e l y  t h i n  c y l i n d r i c a l  surface coaxial  
with an ax ia l -cy l indr ica l  reac t ive  surface. The reac t ive  surface i s  of i n f i n i t e  
extent, and the per fec t ly  conducting surface i s  of semi-infinite extent .  The 
surface wave i s  excited by the dominant TM mode i n  the coaxial  portion of the 
s t ructnre .  

Numerical r e s u l t s  a r e  obtained f o r  the energy transported by the r e f l e c t e d  
f i e l d ,  the surface wave f i e l d ,  and the rad ia t ion  f i e l d  by using an exact anal- 
y s i s .  The exact r e s u l t s  a r e  then compared with the  r e s u l t s  from two approxi- 
mation techniques t h a t  a r e  frequently used t o  solve problems of t h i s  c l a s s  t o  
determine the v a l i d i t y  of these techniques. 

This method of exc i ta t ion  was found t o  be very e f f i c i e n t  over a la rge  
range of frequencies and over wide var ia t ions i n  the  surface reactance. 

I NTRODUC T I  ON 

The propagation of electromagnetic surface waves on various types of 
s t ruc tures  has boen widely t rea ted  i n  the l i t e r a t u r e .  This extensive treatment 
has been motivated la rge ly  by the inherent low at tenuat ion and la rge  bandwidth 
found i n  a m y  surface wave s t ruc tures .  Excellent surveys of the propert ies  of 
smface  waves and surface wave s t ruc tures  usefu l  i n  communications systems have 
been presented by Zucker ( r e f .  1) and B a r l o x  ( r e f .  2 ) .  
of work on new s t ruc tures  t h a t  can support surface waves such as anisotropic 
f e r r i t e s  and plasms columns i s  a l s o  being performed. A knowledge of the proper- 
t i e s  of the surface waves associated w i t i ?  these s t ruc tures  can provide some in- 
s i g h t  i n t o  t h e i r  composition. 

A considerable amount 

A common problem t o  a l l  of these areas of i n t e r e s t  i s  the e f f i c i e n t  exc i t -  
a t i o n  or launching of the gxided electromagnetic surface waves. A general  
requirement f o r  a good surface wave launcher i s  a high launching eff ic iency 
over a large frequency bandwidth. Since the surface wave f i e l d s  are of i n f i n i t e  
extent,  the launcher must a l s o  be of i n f i n i t e  extent  t o  have 100 percent launch- 
ing eff ic iency.  Brown ( r e f .  3) has shorm t h a t  the launching eff ic iency of a 



f i n i t e - s i z e d  launcher can be made a r b i t r a r i l y  c lose t o  100 percent.  
e f f ic iency  can be rea l ized ,  however, only a t  the expense of frequency bandwidth. 

T h i s  l asge  

A very limited amount of work has been done i n  analyzing f in i t e - s i zed  
launchers that are physical ly  rea l izable .  
e n t l y  ava i lab le  is  f o r  the  c l a s s  of launchers that a r e  inf in i tes imal  i n  some 
dimension. To t h i s  c l a s s  belong the shor t  e l e c t r i c  and magnetic cur ren t  e l e -  
ments, l i n e  sources, cur ren t  loops, e t c .  The f i n i t e - s i z e d  launcher can be 
handled, a t  least  i n  theory, by a superposit ion of i n f in i t e s ima l  sources. I n  
prac t ice ,  it i s  usua l ly  d i f f i c u l t  t o  car ry  out t h i s  superposit ion because of 
t he  complexity involved i n  the  ca lcu la t ion  and t h e  uncertainty i n  the  d i s t r ibu -  
t i o n  of t he  f i e l d  within the  launcher. The f i n i t e - s i z e d  launcher is  usua l ly  
analyzed by using an approximate f i e l d  d i s t r ibu t ion .  
d i s t r ibu t ion  is of ten  approximated by a "chopped" surface wave d is t r ibu t ion;  
t h a t  is, the  f i e l d  i n  the aperture  plane of t h e  launcher i s  assumed t o  have the  
same form as the  surface wave f i e ld  within t h e  aperture  and i s  assumed t o  
vanish everywhere outs ide of the  aperture .  Another often-used approximation 
technique i s  Kirchhoff's approximation. I n  t h i s  method the  aperture  f i e l d  i s  
assumed t o  be of t he  same form as the  unperturbed incident  f i e l d .  For e i t h e r  
case, t he  surface wave amplitude can be e a s i l y  computed by an in tegra t ion  over 
the aperture  plane s ince the  surface wave modes and the  rad ia t ion  f i e l d  a r e  
orthogonal ( r e f .  4 ) .  The accuracy of t he  r e s u l t s  obtained by using these ap- 
proximation techniques is usua l ly  unknown s ince  no c r i t e r i o n  e x i s t s  which can 
determine the  extent  of the  approximations. 

The majority of numerical data pres- 

The f i e l d  or aperture  

Toe purpose of t h i s  repor t  i s  t o  present an exact analysis  and numerical 
r e s u l t s  f o r  the  launching cha rac t e r i s t i c s ,  r ad ia t ion  pa t te rn ,  and frequency 
bandwidth of a f in i t e - s i zed  launcher t h a t  is  physical ly  rea l izable .  These re- 
s u l t s  w i l l  then be compared with the r e s u l t s  f o r  t h e  "chopped" surface wave 
d i s t r ibu t ion  and with the  r z s u l t s  using Kirchhoff 's  approximation t o  determine 
under what conditions the  approximation techniques are val id .  

The analysis  w i l l  be r e s t r i c t e d  t o  the  c l a s s  of surface wave s t ruc tures  
t h a t  have the  configuration of a cy l ind r i ca l  c o l m  of c i r cu la r  cross sec t ion .  
In  order t o  keep the  r e s u l t s  of t h i s  work as general  as possible,  the e f f e c t  of 
the surface wave s t ruc tu re  on the electromagnetic f i e l d  w i l l  be taken i n t o  
account by specifying a surface impedance. The surface impedance i s  defined as 
the r a t i o  of the  t angen t i a l  e l e c t r i c  f i e l d  t o  t he  component of t he  h n g e n t i a l  
magnetic f i e l d  perpendicular to the  e l e c t r i c  f i e l d  along the  surface of t h e  
wave guiding s t ruc tu re .  The numerical value of the  surface impedance w i l l ,  of 

course, depend on the composition 
of the  s t ruc tu re  and t h e  polar iza-  
t i o n  of t he  electromagnetic f i e l d .  
The case where the  s t ruc tu re  has no 
losses  w i l l  be considered t o  s i m -  
p l i f y  the  analysis ;  consequently, 
the  surface impedance w i l l  be a 
pure reactance.  Only the  case of 
inductive surface reactance w i l l  be 
t r ea t ed  . Z \ 

Figure 1. - Surface wave structure. The pa r t i cu la r  configuration 
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t ha t  w i l l  be considered i s  shown i n  f igu re  1. The s t r u c t u - e  cons is t s  of a re- 
a c t i v e  cy l ind r i ca l  slxface of rad ius  a and of i i i f i n i t e  ex ten t  i n  the  
z-directioa.  Coaxial with t h i s  c y l h d e r  i s  an i n f i n i t e l y  th in ,  pe r f ec t ly  con- 
ducting srirface of razdius b f o r  z < 0. The sur face  wave f ie ld ,  r ad ia t ion  
f i e ld ,  and the  r e f l e c t e d  f i e l d  w i l l  be computed f o r  the case where the  incident 
f i e l d  i s  the  dominant t ransverse magnetic (TM) mode i n  t h e  region a < r < b 
and z < 0, propagating i n  the pos i t i ve  z-direction. The ana lys i s  w i l l  be re- 
s t r i c t e d  t o  the  frequency range where the  dominarit TM mode i s  the  only propa- 
gat ing mode. 

Before a f o r n d  so lu t ion  of the problem is  c a r r i e d  out it i s  in s t ruc t ive  
t o  examine the  various types of waves tha t  e x i s t  i n  t h e  d i f f e r e n t  portions of 
the s t ruc tu re  . 

SYMBOLS 

rad ius  of c y l i n d r i c a l  r eac t ive  surface (see f i g .  1) 

radius  of pe r fec t ly  conducting surface (see f i g .  1) 

b-a (see f i g .  1) 

function defined i n  eq. (18c)  

function defined i n  eq. ( 2 1 )  

Weiner-Hopf f a c t o r s  of F( P ) 

eigenvalue f o r  surface wave mode 

imaginary p a r t  of 

function defined i n  eq. (18a) 

function defined i n  e4.  (18b)  

J--r 
free-space wave number 

r e a l  p a r t  of ko 

negative imaginary p a r t  of 

eigenvalue of coax ia l  mode 

r e a l  p s r t  of 

r a d i a l  coordinate (see f i g .  1) 

surface reactance 

kO 

. 
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c h a r a c t e r i s t i c  impedance of f r e e  space ZO 

a koXs/Zo 

P O  

a:, 

Z ax ia l  coordinate ( see  f i g .  1) 

P c orqlex var iable  

propagation constant f o r  surface wave mode 

real p a r t  of Po 
negative imaginary p a r t  of Po 
propagation constant f o r  coaxial  mode 

r e a l  p a r t  of r 

P; 

r n 
1 

0 

Y; negative imaginary p a r t  of yo 

e azimuthal angle ( s e e  f i g .  1) 

P 

cp 

cp(r ,p)  Fourier transform of q ( r , z )  

cp'(r,P) s ingle-sided Fourier transforms of + ( r , z )  

Jr(r ,z)  8 component of t o t a l  magnetic f i e l d  

q i ( r , z )  incident f i e l d  

q S ( r y z )  sca t te red  f i e l d  

CD angular frequency 

Subscripts: 

i incident 

rad  radiated 

rf r e f l e c t e d  

s w  surface wave 

r a d i a l  coordinate ( s e e  f i g .  1) 

compliment of polar angle (see f i g .  1) 
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SURFACE WAVE LAUNCHER 

Coaxial Port ion of Structure  

The t o t a l  f i e l d  i n  t h e  coaxia l  port ion of t'ne s t ruc tu re  can be expressed 
These modes w i l l  cons is t s ,  i n  i n  t h e  form of an i n f i n i t e  sumrnation of modes. 

general, of t ransverse magnetic (TM), t ransverse e l e c t r i c  (TE),  and hybrid 
modes. The cha rac t e r i s t i c s  of these  modes w i l l  depend on the  var ia t ion  of the  
surface reactance with frequency and on the  polar iza t ion  of t h e  f i e l d .  

A t  low frequencies only t h e  TQo mode w i l l  propagate. The subscr ip ts  
denoting the T h  modes a r e  se lec ted  such t h a t  the  f i rs t  subscr ip t  m corre- 
sponds t o  the  number of cyc l i c  va r i a t ions  of t he  mode i n t e n s i t y  with 8 and 
the second subscr ipt  n corresponds t o  the  number of nodes o f  the  mode inten-  
s i t y  with radius .  
r a d i a l  components and a magnetic f i e l d  with an azimuthal component. A l l  other 
f i e l d  components a r e  zero. The remaining TM modes and a l l  the  TI3 and hybrid 
modes a r e  cu t  off a t  low frequencies.  Thus, t he  t o t a l  f i e l d  i n  the  coaxia l  
port ion of the s t ruc tu re  w i l l  cons is t  of the  TMoo mode except i n  the  v i c i n i t y  
of the d iscont inui ty  a t  z = 0. The presence of the d iscont inui ty  w i l l  cause 
the  dominant T G 0  mode t o  exc i te  t h e  evanescent m/ron modes. 
possible  modes a r e  not exci ted s ince  both the  TMoo mode and the  d iscont inui ty  
a r e  c i r c u l a r l y  symmetric. The t o t a l  f i e l d  i n  the  coaxial  port ion of the  s t ruc-  
t u r e  w i l l  cons is t ,  therefore ,  of t he  e n t i r e  spectrum of 'I!Mon modes with each 
mode having an a x i a l  and r a d i a l  component of e l e c t r i c  f i e l d  and an azimuthal 
component of magnetic f i e l d .  Since the  e l e c t r i c  and magnetic f i e l d s  a r e  re- 
l a t e d  by Maxwell's equations, only the  mgne t i c  f i e l d  need be determined t o  
uniquely specify the t o t a l  f i e l d .  Tnus, the  azimuthal o r  8 component of t he  
magnetic f i e l d  can be regarded as a sca l a r  fbnction from which a l l  the  other 
f i e l d  components can be derived. 

The TMoo mode is composed of an e l e c t r i c  f i e l d  with a x i a l  and 

A l l  t he  other 

L e t  Q ( r , z )  be the  8 component of the  rmgnetic f i e l d .  Then, i n  the  co- 
a x i a l  port ion of the  s t ruc tu re ,  q ( r , z )  can be expanded i n  a s e r i e s  of t h e  
eigenfunctions ( r e f .  5, pp. 709 t o  7 7 8 ) :  

n = l  

where the  An a re  complex amplitude constants.  A time dependence of  ejwt 
has been assumed for a l l  f i e l d  quan t i t i e s .  Since the  so lu t ion  (1) must s a t i s f y  
Maxwell's equations, t h e  eigenvalues pn 
are r e l a t e d  by 

y; = PO 

r2 = p; - kg n 

and the  propagation constants y, 

+ k; 

for n > 0 
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where ko i s  the free-space wave number. The eigenvalues pn a r e  determined 
by the boundary conditions. The r a t i o  of t h e  a x i a l  component of the  e l e c t r i c  
f i e l d  t o  the azimuthal component of the magnetic f i e l d  must equal the surface 
reactance j X s  along the  react ive surface r = a.  This condition requires  
$ ( r , z )  t o  s a t i s f y  the equation 

r=a 

where a koXs/Zo and Zo i s  the  c h a r a c t e r i s t i c  impedance of f r e e  space. 
Subst i tut ing the general  solut ion (1) i n t o  equation ( 2 )  generates the following 
s e t  of equations that must be s a t i s f i e d  by the eigenvalues pn: 

J ~ (  -jpob )Hg( -jpoa) - J ~ (  -jpoa)Hi( -jpob) 

J1( -jpoa bo( -jpob ) - J ~ (  -jpob )~1( - jpoa)  
= -aa ( 3 a )  jpoa ----- 2 2 

Along the  surface of the perfect  conductor r = b, the a x i a l  component of the 
e l e c t r i c  f i e l d  must vanish. 
e quat ion 

This condition requires  @ ( r , z )  t o  s a t i s f y  the 

This boundary condition has been b u i l t  i n t o  solut ion (1). 

If the surface reactance vanishes, the f i r s t  term i n  solut ion (1) w i l l  r e -  
duce t o  the ordinary TEM wave associated with a coaxial  l i n e ;  whereas the re -  
maining terms i n  solut ion (1) w i l l  reduce t o  the TMon modes f o r  a coaxial  l i n e .  
It should a l s o  be noted t h a t  since the t o t a l  f i e l d  cons is t s  e n t i r e l y  of TM 
modes it is  only necessary t o  specify the surface reactance for oae polar izat ion 
of the e l e c t r i c  f i e l d .  The value of the  surface reactance f o r  other polar iza-  
t ions  is  a r b i t r a r y .  

Open Portion of Structure  

The t o t a l  f i e l d  i n  the  open portion of the  s t ruc ture  consis ts  of d i scre te  
modes guided by the  reac t ive  surface plus the  rad ia t ion  f i e l d .  Tne guided 
waves can be described as e i t h e r  TM, TE, or hybrid. Since the f i e l d  i n  the  
coaxial  portion of the  s t r u c t u r e  i s  composed e n t i r e l y  of c i r c u l a r l y  symmetric 
TM modes and s ince the s t ruc ture  i s  c i r c u l a r l y  symmetric, the f i e l d  i n  the open 
portion of the s t ruc ture  w i l l  a l s o  consis t  of c i r c u l a r l y  symnetric T M  modes. 
The only transverse magnetic mode t h a t  possesses c i r c u l a r  symmetry i s  the 
mode, which i s  co-monly ca l led  the GoLbau wave. The s ingle  subscript  n de- 
noting the various TM, modes r e f e r s  t o  the number of cycl ic  var ia t ions of the 
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mode i n t e n s i t y  with 8 .  A second subscr ipt  i s  not necessary since a l l  modes i n  
the open port ion of the  s t r u c t u r e  a r e  evanescent i n  the r a d i a l  direct ion.  

@ ( r , z )  i n  t h e  open portion of the  s t ruc ture  consis ts ,  
therefore ,  of the  rad ia t ion  f i e l d  plus the TM, surface wave ( re f .  2,  pp. 60 
t o  69)  of the form 

The t o t a l  f i e l d  

where Bo i s  a complex amplitude constant.  The eigenvalue ho and the propa- 
gation constant Po a r e  r e l a t e d  by 

s ince equation (5 )  must s a t i s f y  Maxwell's equations. The eigenvalue ho i s  
determined by the boundary condition ( 2 )  a t  the reac t ive  surface.  
equation (5 )  i n t o  equation ( 2 )  requires  

Subst i tut ing 
ho t o  s a t i s f y  the equation 

FORM4L SOLUTION OF PROBLEM 

Statement of Problem 

The formal solut ion of the problem w i l l  be c a r r i e d  out by using Laplace 
transform and Wiener-Hopf ( r e f s .  6 and 7 )  techniques. 
decompose'the t o t a l  f i e l d  @ ( r , z )  i n t o  two p a r t s :  an incident  f i e l d  q i ( r , z )  
and a sca t te red  f i e l d  

$ ( r , z )  = q i ( r , z )  + q s ( r , z )  

It is  convenient t o  

q s ( r , z ) ,  where 

The incident f i e l d  i s  the dominant TMoo mode i n  the coaxial  portion of the 
s t ruc ture  and e x i s t s  by d e f i n i t i o n  f o r  a < r < b and a l l  values of z :  

The amplitude f a c t o r  i n  equation ( 7 )  has been se lec ted  such t h a t  the i m i d e n t  
f i e l d  has u n i t  amplitude a t  r = b. Since the  incident  f i e l d  does not s a t i s f y  
the proper boundary conditions f o r  z > 0, the sca t te red  f i e l d  w i l l  contain a 
term of the same form as the  incident  f i e l d  f o r  z > 9 t o  n u l l i f y  t h i s  improper 
solut ion.  

The sca t te red  f i e l d  s a t i s f i e s  the  following equations: 
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r=a 

z<o 

Z X )  z>o 

r =b+ 
Z X  

r=b- 
z>o 

Equation ( 8 )  is  the  Helmholtz equation expressed i n  cy l ind r i ca l  coordinates. 
Equations ( 9 )  and (10)  a r e  a statement of t he  boundary conditions on the  reac- 
t i v e  surface and on the  pe r fec t ly  conducting surface,  respect ively.  Equation 
(11) requires  the sca t t e red  f i e l d  t o  be discontinuous a t  and z > 0 
i n  order t o  make the  t o t a l  f i e l d  continuous. 
component.of t h e  e l e c t r i c  f i e l d  t o  be continuous a t  r = b and z > 0. I n  
addi t ion t o  the  above boundary conditions, a r ad ia t ion  condition must a l s o  be 
imposed. The r ad ia t ion  condition requires  a l l  admissible solut ions for the  
sca t te red  f i e l d  t o  correspond t o  divergent waves a t  i n f i n i t y .  

r = b 
Equation ( 1 2 )  requires  the a x i a l  

Laplace Transformation 

Let the function c p ( r , p )  be defined by 

where 
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and 

The sca t te red  f i e l d  q S ( r , z )  can Ylen be recovered by the inversion i n t e g r a l  

where C denotes a s u i t a b l e  contour i n  the  coinplex P-plane. 

I n  order t o  make cp+( r ,P )  and cp-(r ,p)  ana ly t ic  functions of P i n  a 
common region i n  the complex p-plane, the free-space wave number ko w i l l  be 
ma2de complex. 
rounding the struct.Jre. L e t  jk, = jk; + ko, where k; and ko a r e  r e a l .  
In  the f i n a l  solut ion 
the l o s s l e s s  case.  Since ko i s  complex, the propzgation constants yo and 
Po w i l l  a l s o  be complex. Thus, ra and Po w i l l ,  i n  general, be given by 
jyo  = jr; + y-" 

can be shown t o  be v a l i d  0 

for a l l  cases.  

This i s  equivalent t o  introdEcing losses  i n t o  th: medium sur- 

k: w i l l  be s e t  equal t o  zero t o  recover the r e s u l t  for 

and j p o  = jP+ + Po, where y;, rg, P A ,  and P: a r e  a l l  r e a l .  
and rg 5 @: < k: The inequal i t ies  k; 5 5 To - 

Taking the Laplace transform of equations ( a ) ,  (9) ,  and (10)  gives 

r =a 

where p 
-r: < Re P < y:. 

by v i r t u e  of t h e  previous discussion, must be r e s t r i c t e d  t o  the range 

Solution for Transformed Scattered Field 

The solut ion of equation (13) i s  of the  form 

cp(r ,p)  = A ( P ) J ~ ( W  + B ( P ) H ? ( ~ )  

9 



where A (kg + P 2 )  1'2 and A ( P )  and B ( P )  are su i t ab le  functions of P t h a t  
must be se lec ted  t o  s a t i s f y  the boundary conditions (14)  and (15) and the r ad i -  
a t i o n  condition. 

I n  the  region a < r < b t h e  proper so lu t ion  of equation (13) is 

The so lu t ion  given by equation ( 1 6 )  i s  an even funct ion of 
e i the r  branch of A can be selected.  I n  the region r > b the  proper solu- 
t i o n  of equation (13) i s  

A; consequently, 

I n  order t o  s a t i s f y  the rad ia t ion  condition, the branch of A where I m  A < 0 
must be se lec ted .  

The unknown coef f ic ien ts  cp(b-,P) and cp(b+,P) i n  equations ( 1 6 )  and ( 1 7 )  
can be determined by the discont inui ty  condition on the sca t te red  f i e l d  a t  
r = b This can e a s i l y  be accomplished by in t ro-  
diicing the functions 

as given by equation (11). 
J+( b ,P ) , J-( b ,P ) and E+( b ,P ) , where 

P O  

r=b 

It should be noted t h a t  the  function 
of the  portion of the e l e c t r i c  current  on the per fec t ly  conducting surface 
r = b associated with the sca t te red  f i e l d .  The function E+(b,P) i s  propor- 
t i o n a l  t o  the  transform of the a x i a l  component of the t o t a l  e l e c t r i c  f i e l d  
evaluated a t  r = b. 
equation 

J-(b,P)  i s  ac tua l ly  the  Laplace transform 

Thus, E+(b,P) could have been defined equally wel l  by the 

r=b 
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by v i r t u e  of equation (15).  
f o r  the  region 

The funct ion J+(b,p)  can be calculated a t  once f o r  
R e  p > -rl by using equation (11) : 

1 
J+(b,P> = + jro 

The functions E+(b,p) a re ,  a t  present,  unknown; however, a con- 
s ide ra t ion  of the complex forms of ko, Po, and To revea ls  t h a t  J - (b  ) is  
an ana ly t i c  funct ion of t he  complex var iab le  p i n  t he  region R e  p < To and 
that 

J '(b,p) and 

4 
E'(b,p) i s  ana ly t i c  i n  the  region R e  p > -r:. 

From the  de f in i t i ons  of J+(b,p) and J-(b,P)  it is  apparent t h a t  

Cp(b+t,P> - Cp(b',P) = p ( b , P >  + J'(b,P) ( 2 0 )  

The unknown coe f f i c i en t s  
function 
de f in i t i on  f o r  E+(b,p) as given by equation (18c). 
t i o n  allows the  l e f t  s ide  of equation ( 2 0 )  t o  be put i n t o  the  form 

cp(b',P) and Cp(b+,P) can be expressed i n  terms of t he  
E+(b,P 1 by using the  solut ions ( 1 6 )  and ( 1 7 )  i n  conjunction with the  

The r e s u l t  of t h i s  opera- 

Y(b',P) - T(b-,P) = F(P)E+(b,P) ( 2 1 )  

where F(P)  i s  given by 

The funct ion 
Subs t i tu t ing  equation ( 2 1 )  i n t o  equation ( 2 0 )  and using the  r e s u l t  f o r  
J+(b,p)  from equation ( 1 9 )  give 

F(p)  can be shown t o  be ana ly t ic  i n  the s t r i p  -yg < Re P < yg. 

Wiener-Hopf f ac to r i za t ion .  - Equation ( 2 2 )  can be solved f o r  the functions 
E+( b , n a n a  
F(P);  that is ,  F(j3) w i l l  be expressed as the r a t i o  of  t he  two functions 
and F-(P),  where F ' t ( P )  is ana ly t i c  and nonzero f o r  Re P > -yi and F'(P) is 
ana ly t i c  and nonzero f o r  The d e t a i l s  of t h i s  f ac to r i za t ion  are 
given i n  the  appendix. It i s  su f f i c i en t ,  a t  t h i s  point  t o  l i s t  some of t he  
propert ies  of the funct ions P ( P )  and F- (P) :  

J-( b,P ) by performing a Wiener-Hopf f ac to r i za t ion  on the funct ion 
P ( p )  

R e  P < r:. 

(1) The funct ion F+(P) has a s ingle  zero a t  P = - j p o  and a branch point  
a t  P = -jko. 

11 



( 2 )  The function F'(P) has an i n f i n i t e  number of zeros i n  the  complex 
The zeros of F-(p) a r e  located a t  P-plane and a branch point  a t  

P = jro and P = r n ( n  > 0) .  
P = jk,. 

(3)  The f'unction F + ( P )  is of he order P-l-I2 a t  in f in i ty ,  and t h e  
funct ion F-(P) is of t h e  order P1 4 a t  i n f i n i t y .  

The decomposition of the  funct ion F(P) i n t o  the  r a t i o  of P(P) t o  F'(P) 
allows equation ( 2 2 )  t o  be put i n t o  the  form 

Figure 2 shows the  regions i n  the complex 
a r e  ana ly t ic .  
is ana ly t ic  f o r  
The equal i ty  i n  equation ( 2 3 )  holds only i n  the  s t r i p  

P-plane where the  various transforms 
A study of f igure  2 reveals  t h a t  t h e  l e f t  s ide  of equation ( 2 3 )  

Re p > -y: and that the  r i g h t  s i d e  is  ana ly t ic  f o r  Re B < rg. 
-rg < Re p < rg. 

Edge conditions.  - The so lu t ion  f o r  t h e  sca t t e red  f i e l d  i s  not unique un- 
less t h e  edge conditions a r e  spec i f ied  a t  
t o  7 6 ) .  These condi t io  s require  the  a x i a l  component of the  e l e c t r i c  f i e l d  t o  
be of the  order of z - q 2  a t  the  edge, which ma es the  transform of t he  elec-  
t r i c  f i e l d  ( i . e . ,  E'(b,p)) of the  order of p - 3 '  as p 
t i o n  e x i s t s  f o r  t he  asymptotic form of t h e  cur ren t  a t  t he  edge. 
requires  J-(b,P)  t o  be of t h e  order of p - l  as p + -m. 

r = b and z = 0 ( r e f .  7, pp. 75 

m. A similar condi- 
This condition 

The asymptotic forms of f l ( p ) ,  F'(p), E+(b,p), and J'(b,P) f o r  l a rge  
values of p show t h a t  each s ide  of equation ( 2 3 )  approaches zero as P goes 
t o  i n f i n i t y  i n  the  proper ha l f  plane. 
i n  the  complex 

A funct ion t h a t  i s  ana ly t ic  everywhere 
P-plane can be defined from equation ( 2 3 ) .  This f inc t ion  is 

Figure 2. - Regions in complex p-plane where transforms are analytic. 

equal t o  the  l e f t  s ide  of equation 
( 2 3 )  f o r  
equation ( 2 3 )  f o r  
e i t h e r  s ide  of equation ( 2 3 )  i n  the 
s t r i p  -r: < R e  I3 < r:. L iouv i l l e ' s  
theorem ( r e f .  5, pp. 381 t o  382)  r e -  
quires  t h i s  function t o  be zero s ince 
zero i s  the only function t h a t  is 
ana ly t i c  everywhere i n  the complex 
p-plane and vanishes a t  i n f i n i t y .  
Se t t i ng  the  l e f t  s ide  of  equation 
( 2 3 )  equal t o  zero gives 

Re p > - r g , t h e  r i g h t  s ide  of 
Re p < r6J and 

Note that the  proper edge conditions 
f o r  
t i o n  (24 ) .  

E+(b,p) a r e  s a t i s f i e d  by equa- 

1 2  



--- Transformed _ _  . _-- sca t t e red  f i e l d .  - The coef f ic ien ts  cp(b',p) and cp(b+,p) can 
now be expressed i n  t e r m s  of the  known function 
( 1 6 ) ,  (171, and (18c):  

E+(b,p) by using equations 

Combining the  expressions for 
and (17), respect ively,  completes the so lu t ion  f o r  the  transformed sca t t e red  
magnetic f i e l d .  

cp(b-,P) and cp(b+,p) with the  so lu t ions  ( 1 6 )  

Scat tered Field 

Inversion in t eg ra l .  - The sca t t e red  magnetic f i e l d  qs(r,z) can now be - 
computed by using the i;;version i n t e g r a l  

Contou i I -ki 7: 

The inversion contour C must be l o -  
cated i n  t l z  s t r i p  
a s  shown i n  f lgu re  3, and be on the 
sheet of the  Riemann surface t h a t  
corresponds o the  choice 

The branch cu t s  were se lec ted  as 
s t r a i g h t  l i n e  segments extending r a -  
d i a l l y  from the  branch points  
p = fjk, .  For the  l o s s l e s s  case the 
branch cu t s  w i l l  be located on the  
imaginary P -axis .  

-r" 0 < Re I3 < r:, 

Im(kg + p z ) 1  ? 2 < 0 i n  t h i s  s t r i p .  

Figure 3. - Inversion contour in complex p-plane. 

Discrete spectrum. - I n  the  com- -- 
putat ion of the  d i sc re t e  port ion of 
the  spectrum, t h e  amplitudes of the 
modes need be evaluated a t  only one 
radius  s ince the  r a d i a l  var ia t ion  of  
these modes i s  already known. It is  
convenient t o  evaluate the  f i e l d  a t  
the  radius  r = b s ince  the  r a d i a l l y  
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varying f a c t o r  i n  the  general  solut ions (16)  and ( 1 7 )  has been normalized t o  
un i ty  a t  r = b. 

First, consider the  region a < r < b and z < 0. The amplitude of the  
sca t t e red  f i e l d  a t  r = b is 

where cp(b',P) is  given by equation (25 ) .  The contour C can be closed i n  the 
r i g h t  ha l f  P-plane with a semicircle of i n f i n i t e  radius  that is deformed 
around the  branch cu t  as shown i n  f igu re  3. The in tegra t ion  along the  semi- 
c i r c l e  and along t h e  branch cu t  can be shown t o  be zero f o r  z < 0. Thus, t he  
i n t e g r a l  over the  o r i g i n a l  contour C must equal -2xj  times the  sum of t h e  
residues of t h e  enclosed poles i n  the r i g h t  ha l f  P-plane. All of the  poles of 
cp(b-,S) i n  the r i g h t  ha l f  P-plane a r e  due t o  t h e  zeros of F - (p ) .  Thus, f o r  
z < o  

The f i rs t  term i n  equation ( 2 7 )  represents  t he  dominant 
r e f l ec t ed  f i e l d ,  and t h e  summation represents  the  evanescent TMon modes i n  
the  r e f l ec t ed  f i e l d .  I n  the region a < r < b and z << 0 the  r e f l ec t ed  
f i e l d  cons is t s  e n t i r e l y  of t he  f i rs t  term, the  TIV&,~ mode. 

wo mode i n  the 

The f i e l d  i n  the  region z > 9 evaluated a t  r = b can be found by using 
the  same inversion in t eg ra l .  This time, however, the contour i s  closed i n  the  
l e f t  half p-plane with a semicircle  of i n f i n i t e  radius  that is  deformed around 
the branch cu t .  The in tegra t ion  along the  semicircle can be shown t o  be zero 
f o r  z > 0. Thus, t he  i n t e g r a l  over the o r i g i n a l  contour C must equal 2 x j  
times the sum of the residues of the  enclosed poles i n  the l e f t  ha l f  p-plane 
plus the branch cu t  i n t eg ra l .  The poles of cp(b',p) i n  the  l e f t  ha l f  p-plane 
a r e  due t o  the  zero of p = - j p o  and the  pole appearing e x p l i c i t l y  
i n  equation (25)  a t  p = - jr,. Thus, f o r  z > 0 

F + ( p )  a t  

- j r o z  I- Branch c u t  i n t e g r a l  ( 2 8 )  - e  

14 



The first t e r m  i n  equation ( 2 8 )  represents  the 
open port ion of the s t ruc ture .  
f i e l d  t h a t  n u l l i f i e s  the incident  f i e l d  i n  the  region z > 9. 

TM, surface wave mode i n  the  
The second term is the  portion of the  s c a t t e r e d  

Continuous --- spectrum. - The branch c u t  i i i tegral  or continuous portion of 
the spectrum gives r i s e  t o  the  waves associated with the rad ia t ion  f i e l d .  
pa t te rn  of the far zone rad ia t ion  f i e l d  w i l l  be determined by t h e  method of 
saddle point  integrat ion.  I n  t h e  region r > b the  sca t te red  f i e l d  i s  given 

The 

by 

where 
map the  complex p-plane i n t o  the complex v-plane with the  mapping f i n c t i o n  

cp(b',p) i s  given by equation ( 2 6 ) .  A t  t h i s  point,  it i s  convenient t o  

p = - j k  s i n  v 
0 

with v = 0 + j v  and t o  transform r arid z i n t o  t h e i r  spherical  coordinate 
equivalents w i t h  r = p cos cp ar1.d z = p s i n  cp ( s e e  f i g .  1). The complex 
v-plane i s  shown i n  f igure  4, where the e n t i r e  p-plane i s  mapped i n t o  a s t r i p  
of w i d t h  n i n  the  v-plane. The quant i t ies  41 t o  Q4 r e f e r  t o  the  images 
of the quadrants of the p-plane i n  the v-plane. With t h i s  transformation the  
expression f o r  the sca t te red  magnetic f i e l d  becomes 

If the observation angle cp is  selected such tha t  cos cp { 0, then f o r  
kop >> 1 the Hankel function 
placed by i t s  asymptotic form 

HF(kop cos cp cos v )  i n  equation (29) can be r e -  

where terms of the  order of (kOp)-'/' 
sca t te red  f i e l d  i s  then given by 

and lower have been neglected. The 

C O S ( V  - c p )  - - 4 

dv 1 / 2  

Z ~ / ' F - (  - jy  )e 

v)F+(-jkosin v ) ( y 0 - k o s i n  v)(koprlcos cpcosv) 
0 

C ( 3 0 )  
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Figure 4. - inversion contour in complex u-plane. Figure 5. - Steepest descent contour in complex u-plane. 

f o r  k@ >> 1. The i n t e g r a l  w i l l  be evaluated by deforming the  contour C 
i n t o  the  contour of s t eepes t  descent. The exponential  term i n  equation (30) 
contains a saddle point  where s in (v  - c p )  = 0 or where v = c p .  In  the  v i c i n i t y  
of t h e  saddle point ,  t h e  quant i ty  cos(v - c p )  can be expanded i n  a Taylor s e r i e s  
t o  give 

cos(v - c p )  = 1 - .e s i n  5 cos 6 . . . 
2 

where cos(v - c p )  w i l l  have i t s  g rea t e s t  
r a t e  of change along the contour t h a t  passes through the  saddle point  v = cp 
a t  an angle of fi/4 with the  cf ax i s  and, i n  general, s a t i s f i e s  t he  equation 
Re[ko cos(v - cp)] = Re ko. 
f igure  5. 

po in t  v = cp and fa l l s  off as e -(kop/2)52 with dis tance 5 along the  
s teepes t  descent contour. If kop >i 1, the  dominant port ion of the i n t e g r a l  
for $,(p,cp) w i l l  be the  integrand evaluated a t  v = cp times the i n t e g r a l  of 
the  Gaussian term with respec t  t o  p. Performing the  in tegra t ion  gives 

(eJ5 = v - cp.  The imaginary p a r t  of 

This s t eepes t  descent contour ( S D C )  is  shown i n  
The exponential  term i n  equation (30) has u n i t  modulus a t  the  saddle 

If more terms were re ta ined  i n  the  asymptotic expansion of the  Hankel 
funct ion and i n  the  expansion of t he  exponent i n  equation ( 2 8 ) ,  $,(p,cp) would 
contain add i t iona l  t e r m s  of t he  order of (kop)-3/2 
terms would give a b e t t e r  approximation t o  the  f i e l d ,  espec ia l ly  if  
extremely la rge ,  but they would not  contr ibute  t o  any ne t  radiated power. 

and lower. These addi t iona l  
i s  not  kop 

I n  deforming the contour C i n t o  the  s teepes t  descent contour, some of 
t he  poles of the  integrand may be crossed as shown i n  f igu re  5. This usua l ly  
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happens i f  the observation angle is near 
the  reac t ive  surface the t o t a l  f i e l d  a l s o  cons is t s  of the d i s c r e t e  surface wave 
modes. 

a/2. It simply indicates  t h a t  ne= 

This completes the  formal solut ion for the  s c a t t e r e d  magnetic f i e l d .  The 
t o t a l  f i e l d  can now be found by adding t h e  sca t te red  f i e l d  t o  the incident  
f i e l d  as given by equation ( 7 ) .  

ENERGY TRANSPORTED BY FIELD 

The energy transported by the f i e l d  w i l l  be computed by using the  complex 
Poynting vector theorem. The only components of the  t o t a l  f i e l d  t h a t  t ransport  
energy are the  incident f i e l d  (eq. ( 7 )  ), the  TM r e f l e c t e d  f i e l d  ( t h e  
f irst  t e r m  i n  eq. 9 2 7 ) ) ,  the TM, surface wave f i e l d  ?;he f irst  t e r m  i n  
eq. ( 2 8 ) ) ,  and the  far zone rad ia t ion  f i e l d  (eq.  (31) ) .  

Since the  function q ( r , z )  i s  the 8 component of the t o t a l  magnetic - 
f i e l d ,  the  electromagnetic f i e l d  E,H is given by 

+ H = 

Thus, the  power P associated with the t o t a l  f i e l d  is  

where S denotes t h e  surface of s u i t a b l e  cross sect ion of the surface wave 
s t ruc ture  and q* denotes the complex conjugate of J I .  

For the  case of the  incident,  re f lec ted ,  and surface wave f i e l d s ,  the only 
component of the  c u r l  of 
given by -a\lr/dz. Since 

Tae t h a t  i s  of i n t e r e s t  is  the  radial component 
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t he  respect ive powers are 

where the  subscr ipts  i, rf, and s w  refer t o  the  incident,  re f lec ted ,  and 
surface wave portions of the  t o t a l  f i e l d ,  respect ively.  For the  case of the  
far  zone rad ia t ion  f i e l d ,  the  component of the  c u r l  of t h a t  i s  of i n t e r e s t  

i s  the cp component given by - ( p $ > .  Actually, only the port ion of t h i s  

component t h a t  var ies  as p - 1  is  of i n t e r e s t .  Thus, 

l a  
PG 

f o r  kop >> 1. The rad ia ted  po'ver i s ,  therefore,  

NUMERICAL RESULTS 

The powers associated with the  various port ions of the f i e l d  were computed 
on an IBM 7094. b/a= 2 . 3  
and i n  f igures  9 t o  11 f o r  b/a 
correspond t o  cha rac t e r i s t i c  impedances of 50 and 138 ohms, respectively,  f o r  a 
coaxial  l i n e  with an a i r  d i e l e c t r i c .  
f l e c t e d  power, and rad ia ted  power t o  incident  power are shown as functions of 
k,d where d = b - a. The range of kod i s  r e s t r i c t e d  s o  t h a t  only the  TMoo 

Some typ ica l  r e s u l t s  are shown i n  f igures  6 t o  8 fo r  
b/a = 10.0. The values of 2 . 3  and 10.0 f o r  

The r a t i o s  of surface wave power, r e -  
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Figure 6. - Percent of incident power in surface wave against k d 
for constant values of surface reactance. Radius ratio, bla = 5.3. 
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Figure 7. - Percent of incident power in reflected wave against kod 
for constant values of surface reactance. Radius ratio, bla = 2.3. 
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Figure 8. - Percent of incident power in radiated wave against kod 
for constant values of surface reactance. Radius ratio, bla - 2.3. 
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Figure 9. - Percent of incident power in surface wave against kod 
for constant values of surface reactance. Radius ratio, bla = 10.0. 
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Figure 12. - Radiation pattern. Surface reactance, Xs = 1.0 Z~ radius ratio, bla = 2.3. 

mode w i l l  propagate i n  the coaxia l  port ion of the s t ruc tu re .  The r e s u l t s  show 
t h a t  t h i s  s t ruc tu re  i s  very e f f i c i e n t  i n  launching surface waves, even when the  
surface reactance i s  qu i t e  low,if kod i s  not too s m a l l .  A comparison of f i g -  
ures  6 and 9 shows t h a t  t he  l a rge r  value of 
e f f ic iency  f o r  a given value of kod. 

b/a y ie lds  a higher launching 

The launcher i s  a l s o  very broad banded as evidenced by the  s m a l l  r e f l ec t ed  
puwer over a la rge  range of It should be noted t h a t  the  curves shoan i n  
f igures  6 t o  11 are  f o r  constant values of surface reactance.  I n  pract ice ,  t he  
surface reactance w i l l  be a funct ion of frequency s o  t h a t  t he  a c t u a l  bandwidth 
of t he  launcher w i l l  not  be known u n t i l  the  s u f a c e  wave s t ruc tu re  i s  spec i f ied .  

kod. 

The rad ia t ion  p s t t e r n  of the  f a r  zone f i e l d  i s  shown i n  f igu re  1 2  f o r  t he  
case where b/a = 2 .3  and Xs = Zo. The curves have been normalized by s e t -  
t i n g  the  maximum value of the  power densi ty  i n  t h e  forward d i rec t ion  equal t o  1. 
The rad ia t ion  pa t te rns  f o r  other values of sdx-face reactance a re  qui te  similar 
t o  those shown i n  f igu re  1 2 .  When surface reactance w a s  increased, t he  beam 
width w a s  found t o  become s l i g h t l y  smaller f o r  a f ixed  value of kod. 

Since the  energy t ransported by the  t o t a l  f i e l d  i s  conserved, t he  power 
associated with the  incident  wave must always equal t he  sum of the powers asso- 
c i a t e d  with the r e f l ec t ed  wave, t h e  surface wave, and the rad ia t ion  f i e l d .  
This f a c t  w a s  used t o  check the numerical r e s u l t s .  

L4UNCHING EFFICIENCY-APPROXIIt4TION TlXXNIQmS 

A common method f o r  determining the  qua l i t y  of a surface wave launcher i s  
t o  compAte i ts  launching ef f ic iency  as a funct ion of frequency. The launching 
eff ic iency i s  defined as the  r a t i o  of the  surface wave power t o  t he  t o t a l  power 
rad ia ted  from t h e  a-gerture of t he  launcher. Before presenting numerical values 
fo r  t h e  launching ef f ic iency  by using the  r e s u l t s  from the  exact analysis ,  it is 
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ins t ruc t ive  t o  consider two approximation techniques. 
excel lent  opportunity t o  check the v a l i d i t y  of these techniques s ince an exact 
r e s u l t  has already been obtained. 

This problem provides an 

The f i rs t  technique t h a t  w i l l  be considered i s  t o  approximate the a p e r k x e  
d i s t r i b u t i o n  of the launcher with a chopped surface wave d is t r ibu t ion .  
plane z = 0 the  t o t a l  f i e l d  q(r,o) i s  assumed t o  bP given by 

In the  

$ ( r , o )  = Hf(-jhor) for a < r < b  

\k(r,o) = o f o r  r > b 

The t o t a l  pgwer radiated from the  aperture is ,  therefore,  

The surface wave f i e l d  t h a t  i s  excited by t h i s  aper ture  d i s t r i b u t i o n  is  of the 
form 

The anplitude of t'le surface wave 
n a l  properties of the surface wave modes ( r e f .  4 ) .  

Bo can be computed by using the orthogo- 

[HB(-jhor)12r dr 1 
The def in i t ion  of launching eff ic iency shows t h a t  the eff ic iency of t h i s  aper- 
t u r e  d is t r ibu t ion  i s  equal t o  Since the  launching eff ic iency i s  equal t o  
the r a t i o  of two i n t e g r a l s  with each i n t e g r a l  having the same integrand and 
same lower l i m i t ,  the launching eff ic iency can be made a r b i t r a r i l y  c lose t o  
100 percent by increasing the upper l i m i t  
This i l l u s t r a t e s  the requirement of an i n f i n i t e l y  la rge  aperture  before 100 per- 
cent eff ic iency can be obtained. 

Bo. 

b of the i n t e g r a l  i n  the numerator. 

A second approximation technique t h a t  w i l l  be considered is  Kirchhoff's 
approximation. For t h i s  method, the aperture d i s t r i b u t i o n  is  approximsted by 
the unperturbed incident  f i e l d ;  t h a t  is ,  the t o t a l  f i e l d  \k (r , z )  evaluated a t  
the aperture plane z = 0 i s  approximsted by 
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q ( r , o )  = o f o r  r > b 

q i ( r , z )  i s  given by equation ( 7 ) .  where 

For t h i s  d i s t r ibu t ion ,  the t o t a l  pmer  
radiated from the aperture  i s  

0 .5 1.0 1 .5  2.0 2.5 
kOd 

Figure 13. -Launching efficiency against kod. Surface 
reactance, X, = 0.5; radius ratio, bla = 2.3. 

The surface wave exc5-ted by t h i s  dis-  
t r i b u t i o n  i s  of t h e  form 

- jPoz  BoHf( - jhor ) e  

where the arnplitude Bo i s  given by 

r b  

[ H1( 2 - j h o r )  I 'r dr 

The launching eff ic iency i s  therefore  

Schwarz's inequal i ty  requires  the r a t i o s  of the  i n t e g r a l s  t o  be l e s s  than 
uni ty .  Thus, the  launching ef f ic iency  i s  bounded from above by po/yo. 

Numerical values f o r  tne  launching efficiency, showing both the exact and 
approxiwte,  a r e  presented i n  f i g u r e  13. The r e s u l t s  show t h a t  the launcher is 
very e f f i c i e n t  over a l a r g z  range of frequencies even i f  the surface reactance 
i s  qui te  l o w .  The exact r e s u l t s  always give a higher launching eff ic iency than 
t h a t  predicted by any of t h e  approximate techniques; however, the approximtion 
techniques give qui te  accurate r a s u l t s  f o r  kod > 1. The values of kod when 
the approximations f a i l  a l s o  give a la rge  r z f l e c t e d  power as shown i n  f igure  7. 
The launcher would not be u s e f u l  i n  t h i s  range unless some impedance matching 
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techniques were employed. 
t i o n  proved t o  be more accurate than Kirchhoff ' s  method i n  giving an est imate  of 
of t h e  exact launching eff ic iency.  

For a l l  cases,  the  chopped surface wave approxima- 

CONCLUSIONS 

Numerical r e s u l t s  were o.btained f o r  t he  energy t ransported by the  re- 
f lec ted ,  t he  surface wave, and the  r ad ia t ion  f i e l d s  by using an exact ana lys i s .  
The r e s u l t s  show t h a t  t h e  coaxia l  launcher i s  very e f f i c i e n t  i n  exc i t ing  sur-  
face waves even when the  surface reactance i s  qu i t e  low. Both approximation 
techniques gave qu i t e  accurate r e s u l t s  as long as the  frequency w a s  s u f f i c i e n t l y  
high. Large discrepancies between the exact and approximate r e s u l t s  occurred 
only when the  launching ef f ic iency  w a s  low. 

Lewis Research Center, 
National Aeronautics and Space Administration , 

Cleveland, Ohio, October 25, 1965. 
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APPENDIX - WIENER-HOPF FACTORIZATION 

The Wiener-Hopf f ac to r i za t ion  of the  function F(P) cons is t s  of f inding 
two functions P ( p )  and F-(P) such t h a t  F(P) = @(p)/F-(p), where P ( p )  is 
ana ly t i c  and nonzero i n  the  region 
zero i n  the  region 
i za t ion  is  based on the Cauchy i n t e g r a l  formula ( r e f .  5, pp. 987-989). 

Re p > -y: and F'(P) i s  ana ly t ic  and non- 
Re p < y-6. The formal procedure f o r  performing t h i s  f ac to r -  

Consider Cauchy's i n t e g r a l  formula 

where p i s  a point  i n t e r i o r  t o  C and f ( s )  is  single-valued and ana ly t ic  
within and on C .  Let t he  contour C be of the  form shown i n  f igure  14. The 
contr ibut ions t o  the  i n t e g r a l  along C2 and C4 cancel.  Thus, 

I J 

The in tegra t ion  over 
t e r io r  t o  C 1 ,  whereas the  in tegra t ion  over Cg produces a f'unction t h a t  i s  
ana ly t ic  everywhere ex te r io r  t o  Cg. This procedure allows an a r b i t r a r y  func- 
t i o n  t o  be decomposed i n t o  the  sum of t w o  functions with each function being 
ana ly t i c  i n  d i f f e ren t  but overlapping portions of t he  complex plane. 

C 1  prod-uces a function t h a t  i s  ana ly t ic  everywhere in- 

The same idea can be extended t o  the case where f ( P )  i s  ana ly t ic  i n  an 
i n f i n i t e l y  long s t r i p .  If f ( p ) / p  vanishes as + W, f ( P )  can be decom- 

cated in tegra t ions  over C1 and Cg i n  f igu re  15. 
posed i n t o  the sum of two functions f + ( p )  and by performing the indi-  

f ( P )  = f + ( P )  + f - ( P )  

The funct ion f ' ( p )  i s  ana ly t ic  f o r  R e  P < s1, and f + ( P )  is ana ly t ic  f o r  
Re p > s 2 .  If f ( p )  is an even funct ion of ' P I  t h e  functions f + ( p )  and f - ( p )  
are r e l a t e d  by f+( - p )  = f ' ( p )  and f'(p) = f'( - P )  . This r e l a t i o n  provides a 
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Figure 14. - Contour C in complex s-plane. 

- 
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*Str ip where f(s) 

5 1  

is  analytic 

Figure 15. - Complex s-plane. 

very simple method f o r  computing f ' (P) ,  f o r  example, i f  f - ( P )  i s  known. 

I n  t h e  problem under consideration, it is  necessary t o  decompose the func- 
t i o n  F (p )  i n t o  the r a t i o  of two functions * ( P )  and F-(P) ra ther  than i n t o  
the s:Jm of two functions,  as discussed i n  the preceding paragraphs. 
s i r e d  decomposition i s  e a s i l y  car r ied  out i f  the function 
with f ( P ) .  Since 

The de- 
In F(P)  i s  i d e n t i f i e d  

Lrl F(P) = In F't(j3) - In F-(P) 

and 

it follows t h a t  

where f + ( P )  and f - ( p )  a r e  cornputed with f ( p )  = In F(p )  by using the pre- 
viously developed formulas. Since F(P) i s  an even function of p ,  F't (p)  and 
F-(P) a r e  r e l a t e d  by F+(p)F-(-B) = 1 and I?(-P)F-(p) = 1. 

Because of t h e  cornplexity of t h e  function 

The function F(P) w i l l  be expressed, f o r  convenience, as the 

F (P)  i n  the problem under con- 
s iderat ion,  it is convenient t o  consider the  various portions of the function 
separately.  

product of the functions K ( P ) ,  L ( P ) ,  M ( P ) ,  N ( P ) ,  and ( P 2  +.rg) 
eq. (21) ), where 

-1 
( s e e  
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where 

- k i  7: 

/ 

and 

7; k i  must be located i n  the  s t r i p  
as shown i n  f igure  1 6  with the point  s = P 
located t o  t'fle l e f t  of 

-yg < Re s <yo 

C1. 

The i n t e g r a l  over C 1  can be evaluated 
by using Cauchy's residue theorem. The con- 
t a u r  can be closed i n  the  r i g h t  half  s plane 

- k i - - i )  
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shown, a f t e r  a considerable araount of work, t h a t  the i n t e g r a l  over the semi- 
c i r c l e  of i n f i n i t e  rad ius  and over the c i r c l e  of in f in i tes imal  radius  that en- 
closes  t h e  branch point  s = jko is zero. Since the integrand has no poles i n  
the r i g h t  ha l f  fi plane ( r e f .  8 ) ,  the i n t e g r a l  over C 1  i s  equal t o  the 
branch cu t  i n t e g r a l .  
a new r e a l  var iable  of in tegra t ion  x such t h a t  s = jkox. The branch c u t  
corresponds t o  the range i n  x of 1 <  x < 00. After some manipulations, the  
expression f o r  L-(p)  becomes 

The branch cu t  i n t e g r a l  can be s implif ied by introducing 

- 

where P.V. denotes the p r i n c i p a l  value of the i n t e g r a l .  
given by 

The f a c t o r  L+(P) i s  
L+(P ) = l/L-( -P ) since 

Next, consider the function 

L ( p )  i s  an even function of P . 
M ( P )  = M+(P)/M-(P). The fac tor iza t ion  can be 

performed o;1 t h i s  function by taking the  logarithmic der ivat ive of M ( P ) :  

& ( P )  - In M - ( P )  = 3n M ( P )  

where 

The i n t e g r a l  over C 1  can be evaluated by closil?g the contour i n  the 
r i g h t  half  P plane with a semicircle of i n f i n i t e  radius  t h a t  i s  deformed 
around the branch cu t  as shown i n  f i g m e  16. It can be shown t h a t  the i n t e g r a l  
over t h i s  semicircle vanishes. Thus, the i n t e g r a l  over the contour C 1  i s  
equal t o  2a j  times the sum of the  residues of the enclosed poles of m ( s )  
plus the  branch cu t  i n t e g r a l .  The integrand m ( s )  has a pole a t  s = j P 0  and 

28 



a second pole a t  the  branch poin t  
shown t h a t  

s = jk,. A f t e r  some manipulation it can be 

1 I d a  + dP Branch cu t  i n t e g r a l  a 
2 ( p  - jko)  P - j P o  

The branch cu t  i n t e g r a l  can be s impl i f ied  by defining a new r e a l  var iab le  

M - ( P )  then becomes 
of in tegra t ion  x such t h a t  s = jkox as w a s  done for t h e  case of L'(j3). 
The expression for 

{l M - ( P )  = M'(0)exp 
r 1 

where 

and 

The f ac to r  M + ( P )  can be e a s i l y  obtained from M - ( P )  by using the  r e l a t i o n  
& ( p )  = I/M-(-P) s ince  

The funct ion 

M ( P )  i s  an even function of p .  

K(P) = K+(P)/K'(P) can be fac tored  by inspection. 

Again, K+(P) is given by K'(P) = l/K-(-P) s ince  K(P) i s  an even function of 
of p .  

The funct ion N(P) = N+(P)/N-(P) can be factored by expressing it i n  the  
form of an i n f i n i t e  product. This i s  possible  s ince  N ( P )  i s  an even funct ion 

of (k: + P 2 )  and has singularit ies i n  the  form of simple poles ( r e f .  5, 1 / 2  
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pp. 382 t o  385). 
N-(P) can be easi ly  iden t i f i ed  as 

From the i n f i n i t e  product expression f o r  N ( P ) ,  t he  flmction 

The function "(P)  is equal t o  l/N-(-P) since N(P) is  an even function of P .  

-1 
The remaining term ( P 2  + y2) i g  the  expression f o r  F ( p )  can e a s i l y  be 

F+(p) i s  thz product 
fac tored  by inspection. 
expressions found f o r  K'(P), L - ( P ) ,  e tc . ,  and the  f ac to r  
of the expressions f o r  e ( p ) ,  L+(P) ,  e t c .  The funct ion ~ ( P )  has a s ingle  
zero a t  
p = -jko, because of the branch points of K+(P), L+(P) ,  and M?(p). The 
functioii 
P = jyo 
a t  P = jko, because of the branch points  of K-(P), L-(P) ,  and M-!P). 

Thus, ?he f ac to r  F-(P) i s  simply the  product of the 

p = - j p o ,  because of t he  zero of &(P) ,  plus a branch point  a t  

F-(P) has an i n f i n i t e  number of zeros i n  the 
/3 = yn(n > 0), because of the  zeros of 

P-plane located a t  
l'J-(P), and a branch point  and 

Thus far the  function F(P)  has been decomposed i n t o  the  r a t i o  ofl , the two 
functions 
F-(p)  i s  ana ly t ic  fo r  Re p < y:. The functions @ ( p )  and F-(p) are not 
unique. Both W(p) and F-(P) can be mult ipl ied by any function p(p>  t h a t  i s  
ana ly t ic  everywhere i n  the f i n i t e  complex P-plane t o  generate a new set  of 
functions @ ( p )  and F'(P). The proper function p ( p )  t o  s e l e c t  i s  t h a t  func- 
t i o n  t h a t  gives the  functions 
r a the r  than exponzntial behavior. This se lec t ion  i s  necessary t o  ensure t h a t  
the  f i e l d  s a t i s f i e s  the proper edge conditions.  

F+(p) and F-(P) such t h a t  F+(P) i s  ana ly t ic  f o r  Re P > -yo and 

@ ( p )  and F-(P) algebraic  behavior a t  i n f i n i t y  

A very lengthy and tedious study of the  asymptotic forms of F + ( P )  and 
F'(p) r svea ls  t h a t  the  proper function p(P)  i s  given by 

wnere Y i s  Eu le r ' s  constant and 

2k0d JE 
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